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We present a new data structure, called a Decomposition Tree (DT), for analysing Boolean

functions, and demonstrate a variety of applications. In each node of the DT, appropriate

bit-string decomposition fragments are combined by a logical operator. The DT has 2k

nodes in the worst case, which implies exponential complexity for problems where the whole

tree has to be considered. However, it is important to note that many problems are simpler.

We show that these can be handled in an efficient way using the DT. Nevertheless, many

problems are of exponential complexity and cannot be made any simpler: for example, the

calculation of prime implicants. Using our general DT structure, we present a new worst

case algorithm to compute all prime implicants. This algorithm has a lower time complexity

than the well-known Quine–McCluskey algorithm and is the fastest corresponding worst

case algorithm so far.

1. Introduction

Boolean functions (BFs) have widespread applications in nearly all fields of science and

engineering. The Reduced Ordered Binary Decision Diagram (ROBDD), which is obtained

from the Binary Decision Diagram (BDD), is probably the most powerful data structure

known to date for the manipulation of large logic functions (Bryant 1992). It provides

a compact representation of Boolean expressions, and there are efficient algorithms for

performing all kinds of logical operations on ROBDDs (Andersen 1997). However, the

ROBDD construction itself is costly because it is based on the isomorphism of nodes and

subgraphs.

In this paper we present a new data structure for BFs, called a Decomposition Tree

(DT). As with BDDs and ROBDDs, it is based on the general idea of a Shannon

† Supported by Grant 0312704E of the Bundesministerium für Bildung und Forschung.
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expansion. However, BDDs and ROBDDs always show a variable ordering (which is, in

principle, arbitrary), and the size of a BDD and ROBDD for a given BF has a strong

dependence on the chosen order. The problem of finding the best variable ordering is

NP-hard (Bollig and Wegener 1996). In contrast to BDDs and ROBDDs, our DT is

completely symmetric in the sense that it represents all variables equivalently. The DT

provides a unified approach to tackling many different BF problems.

For a given function with k variables, we take as input the truth table, which is

represented by a bit-string of length 2k . In all our calculations, appropriate bit-string

decomposition fragments are combined using a logical operator (in each node of the

DT). The use of different operators leads to different applications of the general DT

structure, such as a general classification of a given BF. For many problems, we only

need functions of a particular subclass. In molecular biology, for instance, gene regulatory

networks are simulated with canalysing (Kauffman 2000) and hierarchically canalysing

Boolean functions (Szallasi and Liang 1998). Such functions have also been used to study

such diverse problems as decision structures in social systems (Klüver and Schmidt 1999),

the convergence behaviour of non-linear filters (Shmulevich et al. 2004) and artificial life

(Kleer et al. 1993). Monotonic functions play a special role in game theory, computational

learning, harmonic analysis and signal processing. Non-linear functions are essential for

cryptographic transformations (Hirose and Ikeda 1994; Preneel et al. 1991). Functions

with unate properties are used in the design of conventional cryptosystems (Hirose and

Ikeda 1994), and functions with special symmetry characteristics are important for circuit

restructuring (Jeong et al. 1993).

Each Boolean function can be represented by its disjunctive normal form (DNF). A lot

of BF research has been devoted to minimal DNFs (Clote and Kranakis 2002; Strzemecki

1992; Wang et al. 2001; Wegener 2000; Wegener 1987). The generation of prime implicants

(PIs) of a given function is an important first step in calculating its minimal DNF, and early

interest in PIs (Quine 1952) was mainly inspired by this problem. Meanwhile, a variety of

other applications has been found. PIs are used for alternative representations of Boolean

expressions in various problems of artificial intelligence (Reiter and Kleer 1987), in the

context of safety engineering to analyse fault trees (Dutuit and Rauzy 1997), to implement

Assumption-Based Truth Maintenance, to characterise diagnoses, to compile formulas for

Transcranial Magnetic Stimulation and to implement circumscription (Forbus and de

Kleer 1992; Kleer et al. 1993). PIs play a role in expert system development to find all

irredundant rules from a given rule system and in Electronic Design Automation (Crama

and Hammer 2006). We show that one can simply generate all PIs of a given BF using

our Decomposition Tree and the AND-operator for the manipulation of the appropriate

bit-strings.

In the first part of the paper (Section 2), we introduce the Decomposition Tree and

in the second part (Section 3), we discuss different applications. Section 3.1 demonstrates

efficient ways to classify BFs. In Section 3.2, we present an efficient recursive algorithm to

compute prime implicants. It is shown that our PI algorithm has a lower time complexity

than the well-known algorithm of Quine and McCluskey (Coudert 1994; McCluskey

1956; Quine 1952) which also uses the truth table input format. Finally, we show how the

DT can be used to construct the ROBDD of a given BF.
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2. Decomposition Trees

Let f : {0, 1}k → {0, 1} be a Boolean function on k variables. The Decomposition Tree is

based on the Decomposition Set.

Definition 2.1 (Di-decomposition). The Di-decomposition of function f in input xi is a

segmentation of f into two functions fi0 and fi1, which are defined by the positive and

negative values of the input xi:

Di :
fi0 = f(x1, . . . , xi−1, 0, xi+1 . . . , xk)

fi1 = f(x1, . . . , xi−1, 1, xi+1, . . . , xk) .
(1)

The bit-string representations of fi0,f
i
1 with length 2k−1 are called the decomposition

fragments of the Di-decomposition.

The previous definition can be generalised to decompositions in more inputs.

Definition 2.2 (DiDj-decomposition). Given the Di- and Dj-decompositions, i < j ∈
{1, . . . k}, the DiDj-decomposition is a combination of the Di and Dj decompositions:

DiDj :

f
ij
00 = f(x1, .,

i

0, .,
j

0, ., xk)

f
ij
01 = f(x1, .,

i

0, .,
j

1, ., xk)

f
ij
10 = f(x1, .,

i

1, .,
j

0, ., xk)

f
ij
11 = f(x1, .,

i

1, .,
j

1, ., xk) .

(2)

The decomposition can be extended to an arbitrary input combination of size l � k :

Di1Di2 . . . Dil , i1 < i2 < . . . < il ∈ {1, . . . , k}. This has 2l bit-string fragments of length 2k−l .

The Decomposition Set D contains 2k possible decompositions: {D0, D1, D2, . . . , Dk, D1D2,

. . . , D1D2D3 . . . Dk}, where D0 ≡ f.

Definition 2.3 (Decomposition Tree). The Decomposition Tree (DT) is a rooted tree of all

2k possible decompositions of a given function f on k inputs. A DT has k levels, where

the root is defined to be in level 0. The root node is defined as decomposition D0, which

is equal to the function f. At level 1, all Di ∈ D are child nodes of D0. Level l contains
(
k
l

)
nodes Di1Di2 . . . Dil ∈ D. An edge between a parent node P ∈ D at level l and a child node

C ∈ D at level l + 1 exists if P =
l∏

j=1

Dij and C = P · Dil+1
, where i1 < i2 < . . . < il < il+1

and ij ∈ {1 . . . k}.
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Example 2.1 (General Decomposition Tree for k = 4).

f = D0

D1

D1D2

D1D2D3

D1D2D3D4

D1D2D4

D1D3

D1D3D4

D1D4

D2

D2D3

D2D3D4

D2D4

D3

D3D4

D4

Example 2.2 (A specific Decomposition Tree (k = 3)). We decompose the function x1x̄2 ∨
x̄2x3 with the bit-string 01001100 (truth table). The decomposition tree is:

D0 : f = 01001100

D1 :
f1

0 = 0100

f1
1 = 1100

D1D2 :

f12
00 = 01

f12
01 = 00

f12
10 = 11

f12
11 = 00

D1D2D3 :

f123
000 = 0

...

f123
111 = 0

D1D3 :

f13
00 = 00

f13
01 = 10

f13
10 = 10

f13
11 = 10

D2 :
f2

0 = 0111

f2
1 = 0000

D2D3 :

f23
00 = 01

f23
01 = 11

f23
10 = 00

f23
11 = 00

D3 :
f3

0 = 0010

f3
1 = 1010

To detect a special pattern in a given Boolean function (for example, membership in

the subclass of monotonic functions or all prime implicants) we combine the necessary

decomposition fragments with a Boolean operation. For most applications the order of the

2i bit-strings in nodes of level i is arbitrary, but sometimes it is important (cf. monotonic

BFs, Section 3.1.1). The operator can be any logical operation, for instance AND, OR,

XOR. The result of applying this operator to the decomposition fragments is a Boolean

function, which we call operator-combination (�-combination).
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Definition 2.4 (�-combination). Without loss of generality, given a decomposition

D1D2 . . . Dl of function f. The �-combination is a Boolean function g : {0, 1}k−l → {0, 1}
defined by applying the �-operator 2l − 1 times to the decomposition fragments:

g(xl+1, .., xk) = f12...l
00...0 � f12...l

00...1 � . . . � f12...l
11...1︸ ︷︷ ︸

2l

. (3)

This can also be written as

f(0, 0, . . . , 0, xl+1, . . . , xk)

� f(0, 0, . . . , 1, xl+1, . . . , xk)

. . .

� f(1, 1, . . . , 1, xl+1, . . . , xk)

= g(xl+1, . . . , xk)

(4)

Using the DT and appropriate �-combinations, different properties of BFs can be

detected. According to the concepts detailed below (Sections 3.1.3 and 3.1.5), the BF of

Example 2.2 has

(i) two positive unates in x1 and x3 because fragments f1
0 � f1

1 and f3
0 � f3

1; and is

(ii) canalysing, because fragment f2
1 ≡ 0, thus the function is canalysing (forcing) from 1

to 0 in input x2, which means that it has the representation f = x̄2 ∧ h(x1, x3), with

h(x1, x3) = x1 ∨ x3 (Nikolajewa et al. 2007).

Fortunately, one usually does not need to consider the whole tree (2k nodes) to search

for a special pattern. For instance, for the prime implicant calculation, the tree can

be cut if the ∧-combination gives the constant function g = 0 (g = 1) or a function

containing only one true point, because all ∧-combinations of the decompositions in the

corresponding subtree will lead to constant functions (see Section 3.2). Furthermore, each

node of the DT can be calculated independently of the other nodes. Therefore, for many

problems, only tiny parts of the whole DT have to be considered. For instance, the class

xa1

1 xa3

3 where xaii =
{

xi, if ai=1
x̄i , if ai=0

of implicants of a given BF with k = 4 can be detected by

only calculating the node D2D4 (see Section 3.2). Another example are quadratic Boolean

functions where only DiDj nodes have to be considered.

3. Applications

3.1. Classification of Boolean functions

There are five characteristic classes of BFs (Clote and Kranakis 2002): 0-preserving,

1-preserving, self-dual, monotonic and linear functions. The first three of these can be

detected simply from the truth table. However, it is more difficult to decide whether a

given BF is a monotonic or linear function. In the following we show how the classification

problem can be solved using the DT for these two, as well as for other classes of BFs.
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3.1.1. Monotonic Boolean functions

Definition 3.1. Let a = (a1, . . . , ak) and b = (b1, . . . , bk) be different k-element binary

vectors. We say that a precedes b, denoted a ≺ b, if ai � bi for all 1 � i � k. A Boolean

function f(x1, . . . , xk) is said to be monotonic if for any two vectors a and b such that

a ≺ b, the relation f(a) � f(b) holds.

Detection: If the first and last decomposition fragment of each node in the DT combined

using the �-operator always gives the 1-constant function, then f is said to be monotonic.

Application: Monotonic functions are used in game theory, computational learning theory,

harmonic analysis and signal processing (Bshouty and Tamon 1996; Makino and Ibaraki

1997; Shmulevich et al. 2004; Wendt et al. 1986). This is one of the characteristic classes

(Clote and Kranakis 2002).

3.1.2. Linear Boolean functions

Definition 3.2. The Boolean function on k inputs is said to be linear if it can be represented

as f(x1, x2, . . . , xk) = a0 ⊕ a1x1 ⊕ . . . ⊕ akxk , where ai ∈ {0, 1} (⊕ denotes XOR).

Detection: f is a linear function if the ⊕-operator applied to all the k pairs of decom-

position fragments of the k nodes at the first level of the DT give constant functions. If

the ⊕-combination of Di is the 0-constant function, then f(x1, ., 0, ., xk) = f(x1, ., 1, ., xk)

(tautology in xi), and thus coefficient ai = 0. If the ⊕-combination of Di is the 1-constant

function, then f(x1, ., 0, ., xk) = f̄(x1, ., 1, ., xk) and f can be written as

f(x1, ., xk) = xi ⊕ g(x1, .xi−1, xi+1, xk) ,

since

x̄if(x1, ., 1, ., xk) ∧ xif̄(x1, ., 1, ., xk) = xi ⊕ f(x1, ., 1, ., xk) .

Application: Linear functions are used in cryptography to establish non-linearity criteria

for cryptographic transformations (Hirose and Ikeda 1994; Preneel et al. 1991). This is

one of the characteristic classes (Clote and Kranakis 2002).

3.1.3. Positive (negative) unate

Definition 3.3. A BF has a positive (negative) unate in xi if

f(x1, . . . , xi−1, 1, xi+1 . . . , xk) � f(x1, . . . , xi−1, 0, xi+1, . . . , xk)

(f(x1, . . . , xi−1, 0, xi+1 . . . , xk) � f(x1, . . . , xi−1, 1, xi+1, . . . , xk)) .

A BF is said to be unate if it is unate (positive or negative) in all variables.
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Detection: If the corresponding �-combination of Di is 1-constant, then xi is positive

(negative) unate. If this holds for all i, then f is unate. The function of Example 2.2 is

unate.

Application: If f is positive unate in xi, then f(x) = xif(x1, ., 1, .xk)∨f(x1, ., 0, .xk). This fact

is used by the Unate Recursive Paradigm and is important in the design of conventional

cryptosystems (Brayton et al. 1984; Brayton 1992; McGeer et al. 1993; Rudell 1985).

3.1.4. Symmetry

Definition 3.4. A BF is said to be partially symmetric if the function is not changed when

a pair of variables is exchanged. A BF is totally symmetric if it does not change when

any possible pair of variables is exchanged.

Detection: A function is totally symmetric if all decompositions at the first level are the

same. For example, the totally symmetric function 01101000 (x1x̄2x̄3 ∧ x̄1x̄2x3 ∧ x̄1x2x̄3)

yields the same decomposition for all variables:

D1 :
0110

1000
, D2 :

0110

1000
, D3 :

0110

1000
.

If some but not all of the first level decompositions are the same, it is a partially

symmetric function. Other types of symmetry can be detected by a comparison of

decompositions corresponding to nodes at higher levels.

Application: Symmetric functions can be synthesised using fewer logic elements, so they

play an important role in logic synthesis and functional verification. They are used

for efficient circuit restructuring (Boyar et al. 2000; Chung and Liu 1998; Jeong et

al. 1993). The detection of such symmetries is a popular field of research (Benini and de

Micheli 1997; Mohnke and Malik 1993).

3.1.5. Canalysing Boolean functions

Definition 3.5. A Boolean function f on k variables is said to be a canalysing function if

∃a, b ∈ {0, 1} and ∃i ∈ {1, . . . , k} such that ∀x1, . . . , xi−1, xi+1, . . . , xk

f(x1, x2, . . . , xi−1, a, xi+1, . . . , xk) = b .

Detection: If there exists i such that the fragment fia of a node in the first level of the DT

is a b-constant function, then f is canalysing. For example, the function of Example 2.2

is canalysing. Moreover, the structure of the DT indicates how to extend the concept of

canalysing single inputs to canalysing combinations of inputs. For example, in Example 2.2

the combination x̄2x3 canalyses from 1 to 1.

Application: Canalysing functions have simplified logic expressions of the form

f(x) = xaii � g(x1, ., xi−1, xi+1, ., xk) ,
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where g ∈ {0, 1}k−1, � ∈ {∨,∧}. There are many applications in genetic network modeling

(Kauffman 2000; Nikolajewa et al. 2007), artificial life (Kleer et al. 1993), non-linear

digital filter design (Shmulevich et al. 2004) and sociology (Klüver and Schmidt 1999).

3.1.6. Quadratic Boolean functions

Definition 3.6. A function f is quadratic if the degree of the highest order term in the

algebraic normal form is � 2 (Preneel et al. 1991).

Detection: Linear terms in the algebraic normal form can be detected if the corresponding

⊕-combination in Di is a constant function (cf. the detection of linear functions). Similarly,

quadratic terms in the algebraic normal form are obtained if the ⊕-combination in DiDj

is a constant function: if the ⊕-combination in DiDj is 1-constant, then

f(x1, . . . , xk) = xaii x
aj
j ⊕ g(x1, ., xi−1, xi+1, ., xj−1, xj+1, ., xk) ,

where g does not depend on xi and xj.

Application: Quadratic Boolean functions have applications in cryptography (Preneel et al.

1991).

3.2. Computation of prime implicants

An important step in the logic minimisation of a given Boolean function is the detection of

the corresponding prime implicants. All implicants and prime implicants can be detected

with the help of the ∧-operation applied to each node in the DT.

Definition 3.7. An implicant of a BF f is a product term p in the sum of products

(minterms) of f that implies f. p implies f means that f takes the value 1 whenever p

equals 1. This means that p is fully covered by f: p � f. An implicant p of f is called

prime, if it is not fully covered by any other implicant of f, that is, p �� q, for any other

implicant q of f.

All implicants of a given function can be derived from true points of the ∧-combination,

which we call ∧-patterns.

Example 3.1 (∧-combinations for f(x1, x2, x3)=11011100).

D1D2 :

f12
00 = 11

∧ f12
01 = 01

∧ f12
10 = 11

∧ f12
11 = 00

g(x3) = 00

D1D3 :

10

∧ 11

∧ 10

∧ 10

g(x2) = 10

(5)

D1D2 has no ∧-pattern since its ∧-combination g(x3) is 0-constant. D2D3 and D1D2D3

have no ∧-pattern either. From the truth table representation of g(x2), it follows that

D1D3 has the ∧-pattern at the point x2 = 0. We will show that this true point of the

∧-combination leads to the implicant p(x2) = xa2

2 = x̄2.
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Lemma 3.1 (∧-patterns imply implicants). If the ∧-combination of a function f’s

Di1Di2 . . . Dil -decomposition has the ∧-pattern at point (al+1, . . . , ak), then f contains the

implicant

p = x
al+1

il+1
. . . xakik

where

xaii =

{
xi, if ai = 1

x̄i, if ai = 0
.

Proof. Without loss of generality, given the D1-decomposition of function f with an

∧-pattern at the point (a2, . . . , ak). We show that the product term p(x2, . . . , xk) =
∧k

i=2 x
ai
i

is an implicant of f. This product term p is zero for all input combinations x2 . . . xk except

for p(x2 = a2, . . . , xk = ak) = 1. Thus we only have to prove p � f at point (a2, . . . , ak).

From the ∧-combination,

f(1, a2, . . . , ak) = f(0, a2, . . . , ak) = 1

or

p(a2, . . . , ak) � f(x1, a2, . . . , ak)

= x1f(1, a2, . . . , ak) ∨ x̄1f(0, a2, . . . , ak)

= x1 ∨ x̄1

= 1 ,

so it follows that p � f. That proves, by Definition 3.7, that p is an implicant of function

f. For any decomposition in 1 � l � k inputs, using the Shannon Expansion 2l times, it

can be shown that p is an implicant of f.

Corollary 3.1 (False points of the ∧-combination). Assume a given decomposition Di1Di2 . . . Dil

and a function g on k− l inputs as the corresponding ∧-combination. If g(al+1, . . . , ak) = 0,

then the product term

p = x
al+1

il+1
. . . xakik

is not an implicant of f.

Corollary 3.2 (Termination condition). If there is no ∧-pattern in a given decomposition

Di1Di2 . . . Dil , then no product term of a subset of

{xal+1

il+1
, x

al+2

il+2
, . . . , xakik }

is an implicant of f.

Each decomposition Di1Di2 . . . Dil ∈ D, i1 < . . . < il ∈ {1 . . . k} corresponds to a class of

implicants

x
al+1

il+1
x
al+2

il+2
. . . xakik ,
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where il+1 < . . . < ik ∈ {1 . . . k} \ {i1, . . . , il}. It follows that the Decomposition Tree implies

an Implicant Tree: the next example shows this for k = 4.

Example 3.2 (General Implicant Tree for k = 4).

xa1

1 xa2

2 xa3

3 xa4

4

xa2

2 xa3

3 xa4

4

xa3

3 xa4

4

xa4

4

1

xa3

3

xa2

2 xa4

4

xa2

2

xa2

2 xa3

3

xa1

1 xa3

3 xa4

4

xa1

1 xa4

4

xa1

1

xa1

1 xa3

3

xa1

1 xa2

2 xa4

4

xa1

1 xa2

2

xa1

1 xa2

2 xa3

3

The following checking condition is required for the prime implicant.

Lemma 3.2 (Prime implicant checking condition). If ∃(a1, . . . , ak) ∈ {0, 1}k such that

f(a1, a2, . . . , ak) = 1 and the following k equations are fulfilled

f(ā1, a2, . . . , ak) = 0

f(a1, ā2, . . . , ak) = 0

. . .

f(a1, a2, . . . , āk) = 0 ,

(6)

then a product term p = xa1

1 xa2

2 . . . xakk is a prime implicant of f.

3.2.1. Prime implicants computation algorithm Generally, at level l of the DT, one has

to carry out the operator-combination of 2l fragments of length 2k−l for each node (cf.

Example 2.2). By considering ∧-combinations, we can reduce this to a comparison of two

fragments of length 2k−l by using the bit-string of the ∧-combination of the parent node of

the DT (level l − 1, length 2k−l+1): after the appropriate decomposition of this string, one

obtains the two required bit-strings of length 2k−l (cf. the example in Section 3.2.4). This

leads to a significant reduction in the time complexity, which is based on the following

lemma.

Lemma 3.3. Without loss of generality, given a Boolean function f ∈ {0, 1}k and its

∧-combination g ∈ {0, 1}k−1. If p is an implicant/prime implicant of function g, then p is

also an implicant/prime implicant of f.



The Decomposition Tree for analyses of Boolean functions 421

Proof. We have

p = f(0, x2, ., xk) ∧ f(1, x2, ., xk)

p � g � f

⇒ p � f .

Lemma 3.3 is used in each node of the DT, so we only need the ∧-combination of 2

bit-strings in each node. The following short recursive algorithm computes the prime

implicants of a given Boolean function f.

Algorithm A1. PRIME IMPLICANT COMPUTATION

INPUT : BF f(x1, . . . , xk) as a bit-string S of length 2k

OUTPUT : the set of all PIs for f

{
PROCEDURE GetPrimeImplicants(Dc)

{
ChildDc := �;

for all s ∈ Dc do

{
if s �= {0...0} then

{
ChildDc := ChildDc ∪ ∧-combinations(Decompositions(s));

PI := PI∪ TranslateToPI(s, ChildDc);

}
}
Dc := ChildDc;

if Dc �= � then GetPrimeImplicants(Dc);

}

PI := �;

Dc := ∧-combinations(Decompositions(S));

GetPrimeImplicants(Dc);

return PI;

}

The function Decompositions(s) builds and returns a set of all possible decompositions

of a given function s according to the considered level of the DT. Set Dc contains all ∧-

combinations. The function TranslateToPI(s, ChildDc) proves each ∧-pattern of s (the true

point of the ∧-combination) according to Lemma 3.1 with the help of ChildDc. ChildDc

contains all child ∧-combinations for the considered level. If the ∧-pattern corresponds to

a prime implicant, it is translated into the corresponding logical expression (Lemma 3.1).

Our algorithms are implemented in C++ and are available from the authors upon request.
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3.2.2. Time complexity In this section we make a conservative estimate of the required

run-time based on the number of true points T (f) =
∑2k−1

i=0 fi of a given function f.

Because of the ∧-combination, the number of true points that have to be analysed in each

node can be at most half of the number of true points of its parent node. For each of

the true points (at most T (f)/2i for a node in level i) one has to do k − i prime implicant

checking operations (with the true points of the corresponding ∧-combinations of the

child level). The maximal number of operations per node can be illustrated as follows:

kT (f)

(k−1)T (f)
2

(k−2)T (f)
22

(k−3)T (f)
23

. . .

T (f)
2k−1

. . .

. . .

(k−3)T (f)
23

(k−2)T (f)
22

(k−1)T (f)
2

(k−2)T (f)
22

(k−3)T (f)
23

. . .

. . . (k−1)T (f)
2

The time complexity is given by

k−1∑
i=0

(k − i)
T (f)

2i

(
k

k − i

)
= T (f)

k−1∑
i=0

(
k

i

)
k − i

2i

� T (f)

k−1∑
i=0

(
k

i

)
k

2i

� T (f)k

∞∑
i=0

(
k

i

)(
1

2

)i

= T (f)k(1 +
1

2
)k

� 2kk(1 +
1

2
)k

= O(3kk) .

The penultimate equality sign holds from Newton’s binomial series. Therefore, the time

complexity for the whole prime implicant algorithm is O(3kk). This is less than the time

complexity needed by the the well-known algorithm of Quine and McCluskey for the truth
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table input, which has a runtime of O(N log 3 log2 N) = O(3kk2) (N = 2k) (Wegener 1989;

2000). Of course, heuristics, such as ESPRESSO (Rudell 1985) are faster, but our approach

is the fastest worst case algorithm for prime implicant calculation that we are aware of.

3.2.3. Space complexity It is not necessary to store all nodes while traversing the DT.

As our prime implicant algorithm only has to store two successive levels of the tree, the

algorithm needs maxi{2k−i
(
k
i

)
} bits for Dc, which can be improved to O(2k log 3/k1/2): cf.

Wegener (2000, page 102).

3.2.4. Example

0100111101101001

01001111

∧01101001

g1 = 01001001

0100

∧1001

g5 = 0000

0110

∧0001

g6 = 0000

0010

∧1001

g7 = 0000

01000110

∧11111001

g2 = 01000000

01110110

∧00111001

g3 = 00110000

0100

∧0100

g8 = 0100

00110110

∧10111001

g4 = 00110000

Given the function 0100111101101001 (k = 4), the DT with the corresponding ∧-

combinations is shown above. At the first level one obtains the ∧-combination set

Dc = {g1, g2, g3, g4}. During calculation of the first level we can mark all ∧-patterns

of function f that are covered by ∧-patterns of the functions at level one. This results

in just one ∧-pattern, at position 10 of f, that is not covered by any pattern of level

1. Therefore, we obtain the prime implicant x1x̄2x3x̄4. The ∧-pattern of g1 contains all

possible implicants of the type xa2

2 xa3

3 xa4

4 . Since we have three ∧-patterns in this function

(positions 1, 4 and 7), we get the three different implicants x2x3x4, x2x̄3x̄4 and x̄2x̄3x4.

Combination g2 leads to the implicant x̄1x̄3x4. From g3 we get the implicants x̄1x2x̄4 and

x̄1x2x4, and from g4 we get x̄1x2x̄3 and x̄1x2x3. In the next step we delete level 0 and

calculate level 2 from the DT. By decomposing function g1, we get the ∧-combinations

g5, g6 and g7 (0-constant). We do not need to decompose function g2, because it only

contains one ∧-pattern, which cannot lead to any new ∧-pattern. The ∧-combinations g1

and g2 produce no ∧-pattern sets and thus do not give any additional implicants. The

decomposition of function g3, which represents implicants of class xa1

1 xa2

2 , contains one

∧-pattern, which is the implicant x̄1x2. Again we can mark all ∧-patterns of the parent

level that are covered by ∧-patterns of the child level. It follows that all implicants found
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in g1 and g2 are prime implicants. The implicants of the functions g3 and g4 are fully

covered by the implicant x̄1x2 and are therefore not prime.

Summarising, we have that function f yields the prime implicants x1x̄2x3x̄4, x2x3x4,

x2x̄3x̄4, x̄2x̄3x4, x̄1x̄3x4, x̄1x2.

3.3. ROBDD construction

The DT can be used to construct the corresponding ROBDD of a given BF. At each

decomposition node (starting at the highest level) one has to compare the corresponding

decomposition fragments for equivalence. If an equivalence is found, the corresponding

edge to the terminal node in the ROBDD is constructed, and the DT can be bound

accordingly.

3.4. Summary

The following table summarises all the applications of the Decomposition Tree we have

discussed.

Type of pattern Detection by the DT

Implicant ∧-combination

Prime implicant ∧-combination (Algorithm A1)

Monotonic function �-combinations

Linear function ⊕-combinations of the Di

Positive (negative) unate � (�)-combination of the Di

Quadratic function ⊕-combination of the Di, DiDj

Symmetry All decompositions of the first level are the

same

Canalysing function fragment fia ≡ b

ROBDD equivalence of decomposition fragments.

4. Conclusion

We have presented a new data structure called the Decomposition Tree, which provides

a unified approach to analysing Boolean functions in a variety of ways. By decomposing

bit-strings and combining them using different operators, one can: classify the function;

construct the corresponding ROBDD; and efficiently compute its prime implicants. The

required decompositions and operator-combinations can be done in a highly parallel

manner as each node can be computed independently from all other nodes. The DT

may also be used for logic minimisation: following a fast classification of the function,

one can apply the appropriate minimisation algorithm. Because the DT represents the

most general decomposition of a given Boolean function, we also expect a range of other

possible applications. We have focused here on applications using the same logic operator

for all bit-string combinations, but, in general, one could also apply different ones.
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Shmulevich, I., Lähdesmäki, H. and Egiazarian, K. (2004) Spectral Methods for Testing Membership

in Certain Post Classes and the Class of Forcing Functions. IEEE Signal Processing Letters 11

(2) 289–292.

Strzemecki, T. (1992) Polynomial-time algorithms for generation of prime implicants. Journal of

Complexity 8 37–63.

Wang, Y., McCrosky, C. and Song, X. (2001) Single-faced Boolean Functions and their Minimization.

Computer Journal 44 (4) 280–291.

Wegener, I. (2000) Branching Programs and Binary Decision Diagrams – Theory and Application,

SIAM Monographs on Discrete Mathematics and Applications.

Wegener, I. (1987) The Complexity of Boolean Functions, Wiley.

Wegener, I. (1989) Effiziente Algorithmen für grundlegende Funktionen, B.G. Teubner.

Wendt, P., Coyle, E. and Gallagher, N. (1986) Stack Filters. IEEE Trans. Acoustics Speech Signal

Process 34 (4) 898–911.


